Optimal methods for calculating classification images: weighted sums.

نویسندگان

  • Richard F Murray
  • Patrick J Bennett
  • Allison B Sekuler
چکیده

In signal detection theory, an observer's responses are often modeled as being based on a decision variable obtained by cross-correlating the stimulus with a template, possibly after corruption by external and internal noise. The response classification method estimates an observer's template by measuring the influence of each pixel of external noise on the observer's responses. A map that shows the influence of each pixel is called a classification image. Other authors have shown how to calculate classification images from external noise fields, but the optimal calculation has never been determined, and the quality of the resulting classification images has never been evaluated. Here we derive the optimal weighted sum of noise fields for calculating classification images in several experimental designs, and we derive the signal-to-noise ratio (SNR) of the resulting classification images. Using the expressions for the SNR, we show how to choose experimental parameters, such as the observer's performance level and the external noise power, to obtain classification images with a high SNR. We discuss two-alternative identification experiments in which the stimulus is presented at one or more contrast levels, in which each stimulus is presented twice so that we can estimate the power of the internal noise from the consistency of the observer's responses, and in which the observer rates the confidence of his responses. We illustrate these methods in a series of contrast increment detection experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

Optimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions

Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...

متن کامل

Optimization of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training ANFIS with different repetitions

Introduction: One of the leading causes of death among people is brain tumors. Accurate tumor classification leads to appropriate decision-making and providing the most efficient treatment to the patients. This study aims to optimize of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) w...

متن کامل

Two New Methods of Boundary Correction for Classifying Textural Images

With the growth of technology, supervising systems are increasingly replacing humans in military, transportation, medical, spatial, and other industries. Among these systems are machine vision systems which are based on image processing and analysis. One of the important tasks of image processing is classification of images into desirable categories for the identification of objects or their sp...

متن کامل

Classification images: A review.

Classification images have recently become a widely used tool in visual psychophysics. Here, I review the development of classification image methods over the past fifteen years. I provide some historical background, describing how classification images and related methods grew out of established statistical and mathematical frameworks and became common tools for studying biological systems. I ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2002